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– Triangularizable groups –

Definition 1. An algebraic group G is triangularizable (or trigonizable) if every non-zero rep-

resentation of G contains a one-dimensional subrepresentation.

Remark 2. On the level of comodules (V, ρ), this means there exists a non-zero vector v ∈ V with

ρ(v) = a⊗ v for some a ∈ OG(G).

Example 3. Examples of triangularizable groups are

� Unipotent groups: they have the stronger condition that there exists a v ∈ V with ρ(v) = 1⊗v.

� Diagonalizable groups: representations are direct sums of one-dimensional representations.

� More generally, any subgroup of the upper triangular matrices Tn.

Example 4. The group G = D4 '

{(
±1 0

0 ±1

)
,

(
0 ±1

±1 0

)}
is not triangularizable. Consider

the natural representation of G on V = k2, then the given matrices have no common eigenvectors,

so V has no invariant subrepresentation.

Triangularizable groups can be characterized in a number of ways.

Proposition 5. Let G be an algebraic group. The following are equivalent.

(i) G is triangularizable.

(ii) For every representation (V, r) of G, there exists a basis of V for which r(G) ⊂ Tn, with

n = dimV .

(iii) G is isomorphic to an algebraic subgroup of Tn for some n.

(iv) There exists a normal unipotent algebraic subgroup U of G such that G/U is diagonalizable.

Proof. (i ⇒ ii) Proof by induction on n = dimV , where the case n = 0 is trivial. For n > 0, pick

e1 ∈ V such that 〈e1〉 is a subrepresentation of V . The induction hypothesis on V/〈e1〉 gives a

basis e2, . . . , en for V/〈e1〉 such that G acts via Tn−1. Lifting each ei to some ei ∈ V gives a basis

e1, . . . , en of V such that G acts via Tn.

(ii⇒ iii) Apply (ii) to a faithful finite-dimensional representation of G.

(iii⇒ iv) Embed G ⊂ Tn and let U = G∩Un. Then U ⊂ G is normal and unipotent since Un ⊂ Tn
is. Now G/U injects into Tn/Un ' Gnm, and a subgroup of a diagonalizable group is diagonalizable.
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(iv ⇒ i) Take some U ⊂ G as in (iv) and a representation (V, r) of G. Since U is unipotent, we have

V U 6= 0, and since U is normal in G, we have that V U is stable under G. Namely, for any v ∈ V U

with n ∈ U(k) and g ∈ G(k) we find that

r(n)r(g)v = r(ng)v = r(gn′)v = r(g)r(n′)v = r(g)v,

with n′ = g−1ng ∈ U(k), so r(g)v ∈ V U as well. Hence G/U , which is diagonalizable, acts on V U , so

V U 6= 0 is the sum of 1-dimensional subrepresentations. In particular, there exists a one-dimensional

subrepresentation of V .

Corollary 6. Triangularizable groups are stable under base change, using characterization (iii).

Proposition 7. Let G be an algebraic group over k such that G` is triangularizable, with `/k a

separable extension. Then G contains a unique normal unipotent algebraic subgroup Gu such that

G/Gu is of multiplicative type. Moreover, Gu contains all unipotent algebraic subgroups of G.

Proof. If U ⊂ G is a normal unipotent subgroup with G/U of multiplicative type, then it contains

all unipotent V ⊂ G, as the composition V → G → G/U is trivial by [1, 15.17]. This shows the

uniqueness of U . To show existence, we can assume `/k is a Galois extension, and use characterization

(iv) of Proposition 5 to obtain some normal unipotent U ⊂ G`, which being unique, is stable

under the Galois group Gal(`/k). Hence, it arises from some subgroup Gu ⊂ G. Now Gu is

unipotent since U = (Gu)` is [1, 15.9], and G/Gu is of multiplicative type since (G/Gu)` = G`/U is

diagonalizable.

Proposition 8. Let V be a finite-dimensional vector space over an algebraically closed field k, and

G ⊂ GL(V ) a smooth commutative algebraic subgroup. Then there exists a basis for V such that

G ⊂ Tn, where n = dimV .

Proof. From linear algebra we know that any set of commuting matrices can simultaneously be

brought to upper triangular form, that is, we can choose a basis for V such that G(k) ⊂ Tn(k). Now

G ∩ Tn is an algebraic subgroup of G with (G ∩ Tn)(k) = G(k), and since k-points are dense, we

have G ∩ Tn = G, so that G ⊂ Tn.

Corollary 9. Every smooth commutative algebraic group G over an algebraically closed field k is

triangularizable. Namely, apply the above proposition to a faithful finite-dimensional representation

of G.

– Solvable algebraic groups –

Definition 10. An algebraic group G is solvable if there exists a series of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gt = 1

such that Gi+1 is normal in Gi, and each quotient Gi/Gi+1 is commutative.

Theorem 11 (Lie-Kolchin). Let G be an solvable, smooth, connected algebraic group over an alge-

braically closed field k. Then G is triangularizable.
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Proof. Proof by induction on the dimension of G. It suffices to show that any simple representation

(V, r) of G is one-dimensional.

Let N = [G,G] be the derived subgroup of G, which is a smooth, connected and normal, and

since G is solvable, dimN < dimG. By the induction hypothesis, there exists a one-dimensional

subrepresentation of V when restricted to N . In particular, Vχ 6= 0 for some character χ : N → Gm.

Let W be the sum of all such Vχ, then by [1, 4.17], this sum is direct W =
⊕

χ Vχ, and so the set S

of characters of N for which Vχ 6= 0, is finite. Note that

r(n)r(g)x = r(gg−1ng)x = r(g)χ(g−1ng)x = χ(g−1ng)r(g)x,

for all x ∈ Vχ, g ∈ G(k) and n ∈ N(k), so we find that G(k) permutes the set S.

Now take any χ ∈ S and let H ⊂ G(k) be the stabilizer of χ, that is, H = {g ∈ G(k) : χ(n) =

χ(g−1ng) for all n ∈ N(k)}. Then H is closed in G, since it is given by a set of equations, and H

is of finite index, since S is a finite set. But that implies that the cosets of H define a partition of

G(k), and since G is connected, we must have H = G(k). Therefore, G(k) stabilizes Vχ, and so does

G. As V is simple, we must have V = Vχ.

Now any n ∈ N(k) is a product of commutators, so it acts on V via an automorphism of determinant

1. The determinant of x 7→ χ(n)x is χ(n)dimV , so χ factors as χ : N → µdimV → Gm. But since

N is smooth and connected, χ must be trivial. Hence, G acts through G/N on V . But G/N is

commutative, and the result follows from Corollary 9.

Example 12. The conditions in the above theorem are all necessary:

� (connected) The algebraic group G = D4 as in Example 4 is smooth, solvable but not con-

nected, and indeed we have seen that it is not triangularizable.

� (smooth) Let k be an (algebraically closed) field of characteristic 2, and let G ⊂ SL2 be the

algebraic group given by

G(R) =

{(
a b

c d

)
∈ SL2(R) : a2 = d2 = 1 and b2 = c2 = 0

}
.

Then G is connected (topologically it is a point) but not smooth, and the exact sequence

1→ µ2

a 7→( a 0
0 a )

−−−−−−→ G

(
a b
c d

)
7→(ab,cd)

−−−−−−−−−−→ α2 × α2 → 1

shows that G is solvable. However, G is not triangularizable since the natural action of G on

k2 does not fix any line.

� (solvable) Any algebraic subgroup of Tn is solvable.

� (algebraically closed) Let k = R and consider the algebraic group G given by

G(R) =

{(
a −b
b a

)
∈ Mat2×2(R) : a2 + b2 = 1

}
.

Then G is solvable (since it is commutative), connected and smooth. However it is not trian-

gularizable since it does not have eigenvectors when acting naturally on R2.
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– Structure of triangularizable algebraic groups –

Theorem 13. Let G be a triangularizable algebraic group. Then there exists a normal series

G ⊃ G0 ⊃ G1 ⊃ · · · ⊃ Gr = 1

such that G0 = Gu (see Proposition 7), and the action of G on Gi/Gi+1 by conjugation factors

through G/Gu. Moreover, there exists an embedding Gi/Gi+1 → Ga and the action extends to a

linear action of G/Gu on Ga.

Proof. Recall the normal series for Un, given by

Un = U0 ⊃ U1 ⊃ · · · ⊃ Un(n−1)/2 = 1,

where

Ur(R) = {(aij) ∈ Un(R) : aij = 0 for (i, j) = C` with ` ≤ r} .

We have that Ui/Ui+1 ' Ga, and Tn acts linearly (by conjugation) on Ui/Ui+1, and this action

factors through Tn/Un.

For G, use Proposition 5 (iii) to embed G ⊂ Tn. Then the exact sequence

1→ Un → Tn
q−→ Dn → 1

yields

1→ G ∩ Un → G→ q(G)→ 1.

Note that G∩Un = Gu, since any unipotent U ⊂ G has that q(U) ⊂ Dn is unipotent and diagonal-

izable, so trivial, so U ⊂ G ∩ Un. Now take Gi = G ∩ Ui. Then Gi+1 is normal in Gi and Gi/Gi+1

is a subgroup of Ui/Ui+1 ' Ga. Indeed the group G acts on each Gi/Gi+1 through an action that

extends to Ga, namely the one coming from Ui/Ui+1. Note action of Gu is trivial (one-dimensional

unipotent actions must be trivial by definition), so the action factors through G/Gu.

Theorem 14. Let G be a triangularizable algebraic group over an algebraically closed field k. Then

the exact sequence 1→ Gu → G
q−→ D → 1 splits.

Proof. Proof by induction on the length of the normal series of G from Theorem 13. If this length

is zero, then Gu is trivial and we are done. Otherwise, let N = Gi be the last non-trivial group in

the subnormal series. Then G/N is still triangularizable, and we have a sequence

1→ Gu/N = (G/N)u → G/N
q−→ D → 1.

By the induction hypothesis, the statement holds for G/N , so let s : D → G/N be a section for q.

Now consider the extension by pullback:

1 N G′ D 1

1 N G G/N 1

h

q′

s

p
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Since N ⊂ Ui/Ui+1 ' Ga and D ' G/Gu acts linearly on Ga, it follows from [1, 16.41d] that

Ext1(D,N) = 0, so the top extension splits. Hence, there exists a section s′ : D → G′, and we define

s = h ◦ s′. Indeed, s is now a section for q as qs = qphs′ = qsq′s′ = id.

Theorem 15. Let 1→ U → G→ D → 1 be an extension of a diagonalizable group D by a unipotent

group U over an algebraically closed field k. Any two sections s1, s2 : D → G (as group morphisms)

differ by an inner automorphism inn(u) for some u ∈ U(k).

Proof. Note that G is triangularizable by Proposition 5 (iv). Proof by induction on the length of

the normal series of G from Theorem 13. Both s1 := p ◦ s1 and s2 := p ◦ s2 (with p : G → G/N)

are sections of the sequence 1 → U/N → G/N → D → 1. Similarly to the proof of Theorem 14,

construct the extension by pullback:

1 N G′ D 1

1 N G G/N 1

h

q′

s1

p

By the induction hypothesis, there exists a u ∈ (U/N)(k) such that inn(u)◦p◦s2 = s1. Let u ∈ U(k)

be a lift of u, then p ◦ inn(u) ◦ s2 = s1. Since G′ is a pullback, we have sections σ1, σ2 : D → G′ such

that s1 = h◦σ1 and inn(u)◦s2 = h◦σ2. Since N is commutative unipotent and D is diagonalizable, it

follows from [1, 16.3] that σ2 = inn(n)◦σ1 for some n ∈ N(k), and hence inn(n)◦s1 = inn(u)◦s2.

Theorem 16. Let G be a triangularizable algebraic group over an algebraically closed field k. The

maximal diagonalizable subgroups of G are of the form s(D) with s : D → G a section of 1→ Gu →
G→ D → 1, and any two such maximal subgroups are conjugate by an element of Gu(k).

Proof. We already know from Theorem 15 that two sections differ by an inner automorphism, which

implies the last statement.

Let S be a diagonalizable subgroup of G. Then S∩Gu = 1 since any diagonalizable unipotent group

is trivial, so q : S
∼−→ q(S). Let G′ = q−1(q(S)) and q′ = q|G, that is, we have an extension by

pullback:

1 Gu G′ q(S) 1

1 Gu G D 1

q′

q

Now, whenever s : D → G is a section of the bottom (such exist by Theorem 14), the top sequence

is split by s′ = s|q(S). Since S is a section of q′, there exists by Theorem 15 a u ∈ Gu(k) with

S = (inn(u) ◦ s′ ◦ q)(S), and thus S ⊂ inn(u)s(G/Gu ' D). Hence s(G/Gu ' D) is a maximal

diagonalizable subgroup of G, and all such are conjugate.

References

[1] J.S. Milne, Algebraic Groups

5

https://www.jmilne.org/math/CourseNotes/iAG200.pdf

