Solvable and Triangularizable Groups

JESSE VOGEL
based on Chapter 17 of Algebraic groups by J. S. Milne

— TRIANGULARIZABLE GROUPS —

Definition 1. An algebraic group G is triangularizable (or trigonizable) if every non-zero rep-

resentation of G contains a one-dimensional subrepresentation.

Remark 2. On the level of comodules (V, p), this means there exists a non-zero vector v € V with
p(v) = a® v for some a € Og(G).

Example 3. Examples of triangularizable groups are

m Unipotent groups: they have the stronger condition that there exists a v € V with p(v) = 1®w.
m Diagonalizable groups: representations are direct sums of one-dimensional representations.

m More generally, any subgroup of the upper triangular matrices T,,.
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the natural representation of G on V = k?, then the given matrices have no common eigenvectors,

> } is not triangularizable. Consider

so V has no invariant subrepresentation.

Triangularizable groups can be characterized in a number of ways.

Proposition 5. Let G be an algebraic group. The following are equivalent.

(i) G is triangularizable.

(ii) For every representation (V,r) of G, there exists a basis of V' for which r(G) C T,, with
n=dimV.

(iii) G is isomorphic to an algebraic subgroup of T,, for some n.

(iv) There exists a normal unipotent algebraic subgroup U of G such that G/U is diagonalizable.

Proof. (i = ii) Proof by induction on n = dim V', where the case n = 0 is trivial. For n > 0, pick
e1 € V such that (e;) is a subrepresentation of V. The induction hypothesis on V/(e;) gives a
basis €3, ...,€, for V/{e1) such that G acts via T,,_;. Lifting each €; to some ¢; € V gives a basis
e1,...,e, of V such that G acts via T,,.

(49 = 4ii) Apply (i7) to a faithful finite-dimensional representation of G.

(i1 = iv) Embed G C T,, and let U = GNU,. Then U C G is normal and unipotent since U,, C T,
is. Now G/U injects into T,,/U,, ~ G, and a subgroup of a diagonalizable group is diagonalizable.



(iv = i) Take some U C G as in (iv) and a representation (V,r) of G. Since U is unipotent, we have
VU £ 0, and since U is normal in G, we have that V'V is stable under G. Namely, for any v € VY
with n € U(k) and g € G(k) we find that

r(n)r(g)v = r(ng)v = r(gn’)v = r(g)r(n')v = r(g)v,

with n’ = g~lng € U(k), so 7(g)v € VY as well. Hence G/U, which is diagonalizable, acts on V'V, so
VU £ 0 is the sum of 1-dimensional subrepresentations. In particular, there exists a one-dimensional

subrepresentation of V. O
Corollary 6. Triangularizable groups are stable under base change, using characterization (iii).

Proposition 7. Let G be an algebraic group over k such that Gy is triangularizable, with {/k a
separable extension. Then G contains a unique normal unipotent algebraic subgroup G, such that

G /G, is of multiplicative type. Moreover, G, contains all unipotent algebraic subgroups of G.

Proof. If U C G is a normal unipotent subgroup with G/U of multiplicative type, then it contains
all unipotent V' C G, as the composition V- — G — G/U is trivial by [1, 15.17]. This shows the
uniqueness of U. To show existence, we can assume £/ is a Galois extension, and use characterization
(iv) of Proposition 5 to obtain some normal unipotent U C Gy, which being unique, is stable
under the Galois group Gal(¢/k). Hence, it arises from some subgroup G, C G. Now G, is
unipotent since U = (Gy,)¢ is [1, 15.9], and G/G,, is of multiplicative type since (G/Gy)e = G¢/U is
diagonalizable. O

Proposition 8. Let V' be a finite-dimensional vector space over an algebraically closed field k, and
G C GL(V) a smooth commutative algebraic subgroup. Then there exists a basis for V such that
G CT,, where n =dimV.

Proof. From linear algebra we know that any set of commuting matrices can simultaneously be
brought to upper triangular form, that is, we can choose a basis for V' such that G(k) C T, (k). Now
G N T, is an algebraic subgroup of G with (GNT,)(k) = G(k), and since k-points are dense, we
have GNT, = G, so that G C T,,. O

Corollary 9. FEvery smooth commutative algebraic group G over an algebraically closed field k is
triangularizable. Namely, apply the above proposition to a faithful finite-dimensional representation

of G.

— SOLVABLE ALGEBRAIC GROUPS —
Definition 10. An algebraic group G is solvable if there exists a series of subgroups
G=GyDGD---DG =1
such that G;41 is normal in G;, and each quotient G;/G;1 is commutative.

Theorem 11 (Lie-Kolchin). Let G be an solvable, smooth, connected algebraic group over an alge-

braically closed field k. Then G is triangularizable.



Proof. Proof by induction on the dimension of GG. It suffices to show that any simple representation

(V,r) of G is one-dimensional.

Let N = [G,G] be the derived subgroup of G, which is a smooth, connected and normal, and
since G is solvable, dim N < dim G. By the induction hypothesis, there exists a one-dimensional
subrepresentation of V' when restricted to V. In particular, V, # 0 for some character x : N — G,,.
Let W be the sum of all such V,, then by [1, 4.17], this sum is direct W = EBX V4, and so the set S
of characters of N for which Vj, # 0, is finite. Note that

r(n)r(g)z = (99~ "'ng)z = r(9)x(9~ 'ng)x = x(g~ 'ng)r(9)z,

for all x € V,, g € G(k) and n € N(k), so we find that G(k) permutes the set S.

Now take any x € S and let H C G(k) be the stabilizer of x, that is, H = {g € G(k) : x(n) =
X(g71ng) for all n € N(k)}. Then H is closed in G, since it is given by a set of equations, and H
is of finite index, since S is a finite set. But that implies that the cosets of H define a partition of
G(k), and since G is connected, we must have H = G(k). Therefore, G(k) stabilizes V,, and so does

G. As V is simple, we must have V' = V.

Now any n € N(k) is a product of commutators, so it acts on V via an automorphism of determinant

dimV g0 x factors as x : N = figimv — G.,. But since

1. The determinant of z — x(n)z is x(n)
N is smooth and connected, y must be trivial. Hence, G acts through G/N on V. But G/N is

commutative, and the result follows from Corollary 9. O

Example 12. The conditions in the above theorem are all necessary:

m (connected) The algebraic group G = Dy as in Example 4 is smooth, solvable but not con-

nected, and indeed we have seen that it is not triangularizable.

m (smooth) Let k be an (algebraically closed) field of characteristic 2, and let G C SLsy be the
algebraic group given by

G(R)—{(“ Z) ESLQ(R):az—d2—1andbz—cz—0}.

c
Then G is connected (topologically it is a point) but not smooth, and the exact sequence

o (52), , (2h)-abed

14)#2 G OégXCkQ*)].

shows that G is solvable. However, G is not triangularizable since the natural action of G on

k2 does not fix any line.
m (solvable) Any algebraic subgroup of T, is solvable.

m (algebraically closed) Let k = R and consider the algebraic group G given by

G(R) = { <Z _ab> € Matgxg(R) : (12 +b2 = 1} .

Then G is solvable (since it is commutative), connected and smooth. However it is not trian-

gularizable since it does not have eigenvectors when acting naturally on R2.



— STRUCTURE OF TRIANGULARIZABLE ALGEBRAIC GROUPS —
Theorem 13. Let G be a triangularizable algebraic group. Then there exists a normal series
GDODGyDGD---DG, =1

such that Gy = G, (see Proposition 7), and the action of G on G;/Giy1 by conjugation factors
through G/G,. Moreover, there exists an embedding G;/G;11 — G, and the action extends to a
linear action of G/G, on G,.

Proof. Recall the normal series for U,,, given by
U,=UyD2U;D---D Un(n—l)/Q =1,
where
Ur(R) = {(aij) € Up(R) : a;; =0 for (i,5) = Cp with £ < r}.

We have that U;/U;+1 ~ Gg, and T,, acts linearly (by conjugation) on U;/U;;1, and this action
factors through T,,/U,,.

For G, use Proposition 5 (i4i) to embed G C T,,. Then the exact sequence
1-U,—>T, LD, —>1

yields
1-GnNnU, -G —qG) =1

Note that GNU,, = G, since any unipotent U C G has that ¢(U) C D,, is unipotent and diagonal-
izable, so trivial, so U C GNU,. Now take G, = GNU;. Then G,4; is normal in G; and G;/G; 41
is a subgroup of U;/U;+1 ~ G,. Indeed the group G acts on each G;/G;41 through an action that
extends to G,, namely the one coming from U;/U;;1. Note action of G, is trivial (one-dimensional

unipotent actions must be trivial by definition), so the action factors through G/G,. O

Theorem 14. Let G be a triangularizable algebraic group over an algebraically closed field k. Then

the ezact sequence 1 — Gy, — G % D — 1 splits.

Proof. Proof by induction on the length of the normal series of G from Theorem 13. If this length
is zero, then G, is trivial and we are done. Otherwise, let N = G; be the last non-trivial group in

the subnormal series. Then G/N is still triangularizable, and we have a sequence
1 Gy/N=(G/N)y »G/NL D1,

By the induction hypothesis, the statement holds for G/N, so let 5: D — G/N be a section for .

Now consider the extension by pullback:

1 N G —1 D 1
[ T
1 N G2+ G/N —1




Since N C U;/U;j41 ~ G, and D ~ G/G,, acts linearly on G, it follows from [1, 16.41d] that
Extl(D, N) =0, so the top extension splits. Hence, there exists a section s’ : D — G’, and we define

s = hos'. Indeed, s is now a section for q as ¢s = gphs’ = gs¢’s’ = id. O

Theorem 15. Let1 - U — G — D — 1 be an extension of a diagonalizable group D by a unipotent
group U over an algebraically closed field k. Any two sections s1,s2 : D — G (as group morphisms)

differ by an inner automorphism inn(u) for some u € U(k).

Proof. Note that G is triangularizable by Proposition 5 (iv). Proof by induction on the length of
the normal series of G from Theorem 13. Both 5; := pos; and Sy := po sy (with p: G — G/N)
are sections of the sequence 1 — U/N — G/N — D — 1. Similarly to the proof of Theorem 14,

construct the extension by pullback:

1 N G ——D 1
R
1 N G -2t G/N—1

By the induction hypothesis, there exists a w € (U/N)(k) such that inn(uw)oposy = 357. Let u € U(k)
be a lift of @, then poinn(u) o sy = 5. Since G’ is a pullback, we have sections o1,09 : D — G’ such
that s1 = hooy and inn(u)osy = hoos. Since N is commutative unipotent and D is diagonalizable, it

follows from [1, 16.3] that o2 = inn(n)ooy for some n € N(k), and hence inn(n)os; = inn(u)osy. O

Theorem 16. Let G be a triangularizable algebraic group over an algebraically closed field k. The
mazimal diagonalizable subgroups of G are of the form s(D) with s : D — G a section of 1 — G,, —

G — D — 1, and any two such maximal subgroups are conjugate by an element of G (k).

Proof. We already know from Theorem 15 that two sections differ by an inner automorphism, which

implies the last statement.

Let S be a diagonalizable subgroup of G. Then SNG,, = 1 since any diagonalizable unipotent group
is trivial, so ¢ : S = ¢(9). Let G’ = ¢ *(¢(S)) and ¢’ = ¢|g, that is, we have an extension by
pullback:

’

1 G G L q(8) — 1
1 Gy G—-D 1

Now, whenever s : D — G is a section of the bottom (such exist by Theorem 14), the top sequence
is split by s’ = s|q(s). Since S is a section of ¢, there exists by Theorem 15 a u € Gy (k) with
S = (inn(u) o ¢’ 0 ¢)(S), and thus S C inn(u)s(G/G, ~ D). Hence s(G/G, ~ D) is a maximal

diagonalizable subgroup of G, and all such are conjugate. O
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